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Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields
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Theoretical predictions by Parryet al. for wetting phenomena in a wedge geometry are tested by Monte
Carlo simulations. Simple cubicL3L3Ly Ising lattices with nearest neighbor ferromagnetic exchange and
four freeL3Ly surfaces, at which antisymmetric surface fields6Hs act, are studied for a wide range of linear
dimensions (4<L<320, 30<Ly<1000), in an attempt to clarify finite size effects on the wedge filling
transition in this ‘‘double-wedge’’ geometry. Interpreting the Ising model as a lattice gas, the problem is
equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and
the other two walls favor the gas. For temperaturesT below the bulk critical temperatureTc this boundary
condition ~where periodic boundary conditions are used in they direction along the wedges! leads to the
formation of two domains with oppositely oriented magnetization and separated by an interface. ForL,Ly

→` andT larger than the filling transition temperatureTf(Hs), this interface runs from the one wedge where
the surface planes with a different sign of the surface field meet~on average! straight to the opposite wedge, so
that the average magnetization of the system is zero. ForT,Tf(Hs), however, this interface is bound either to
the wedge where the two surfaces with field2Hs meet ~then the total magnetizationm of the system is
positive! or to the opposite wedge~thenm,0). The distancel 0 of the interface midpoint from the wedges is
studied asT→Tf(Hs) from below, as is the corresponding behavior of the magnetization and its moments. We
consider the variation ofl 0 for T.Tf(Hs) as a function of a bulk field and find that the associated exponents
agree with theoretical predictions. The correlation lengthjy in they direction along the wedges is also studied,
and we find no transition for finiteL andLy→`. ForL→` the predictionl 0}(Hsc2Hs)

21/4 is verified, where
Hsc(T) is the inverse function ofTf(Hs) and jy}(Hsc2Hs)

23/4, respectively. We also find thatm vanishes
discontinuously at the filling transition. When the corresponding wetting transition is first order we also obtain
a first-order filling transition.

DOI: 10.1103/PhysRevE.68.031601 PACS number~s!: 68.08.Bc, 05.70.Fh, 68.35.Rh, 64.60.Fr
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I. INTRODUCTION

Recently the problem of wetting of fluids in a wedge g
ometry provided by a suitably prepared solid surface
found increasing attention, both in the context of applic
tions, e.g., microfluidics, and because of its interest for
theory of inhomogeneous fluids@1–8#. Of particular interest
is the striking finding that under conditions where the flu
does not yet wet the walls forming a wedge, i.e., where
contact angleQ characterizing the wettability properties o
planar substrates@9–14# is still nonzero, a phase transitio
occurs. There the liquid that has condensed in the we
from the ~saturated! gas, to which the substrate is expose
starts to fill the wedge, i.e., the height,0 ~Fig. 1! of the
interface right above the wedge diverges to infinity when
transition temperatureTf of this ‘‘filling transition’’ is ap-
proached. In fact, considering a situation where the wet
transition@10–14# on a planar substrate can be brought ab
by a variation of temperature, one finds@1–4# that,0 is finite
as long asQ(T).a, a being the opening angle of th
wedge ~Fig. 1!, while the filling transition is reached
for Q(Tf)5a, and then ,0 becomes of macroscopi
size,,0→`.

While second-order wetting transitions at planar surfa
are a rather rare phenomenon@15#, it has been predicted tha
continuous filling transitions in wedge geometries are p
sible even for wedges made from substrates exhibiting fi
1063-651X/2003/68~3!/031601~14!/$20.00 68 0316
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order wetting transitions, and hence critical phenomena
sociated with second-order filling transitions should
readily observable@6,7#. In addition, it has been predicted fo
systems with short-range forces between the wall atoms
the fluid molecules that the effect of interface fluctuatio
should be very strong and lead to the following divergen
of the height,0 and the associated correlation lengthsj' ,
jx , andjy as one approaches the filling transition tempe
ture Tf from below @6,7#:

,0}~Tf2T!2bs, j'}~Tf2T!2n',

jx}~Tf2T!2nx, jy}~Tf2T!2ny ~1!

with the exponents

bs5n'5nx51/4, ny53/4. ~2!

Herej' describes the interface roughness inz direction, per-
pendicular to the interface~Fig. 1!, while jx , jy measure
correlations of interface height fluctuations,(x,y)
2^,(x,y)& parallel to the interface in thex direction normal
to the direction of the wedge and in they direction along the
wedge, respectively. Furthermore, the approach to the fi
wedge atT5Tf as a function of the chemical potential di
ferenceDm, i.e., of the field conjugate to the order parame
in the bulk ~the density difference between liquid and sa
rated gas!, has been predicted as@6,7#
©2003 The American Physical Society01-1
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,0}~Dm!21/5. ~3!

In contrast, forT.Tf one expects another power law, whic
is denoted as ‘‘complete filling’’ because of the analogy w
‘‘complete wetting’’ @11–14#, namely@16#,

,0}~Dm!21. ~4!

Unlike the related case of corner wetting in the tw
dimensional Ising model@17–20#, where one believes tha
the corresponding exponents (bs5n'51, nx52) are known
exactly, the results Eqs.~2! and~3! are based on a treatme
that involves several approximations@6,7#.

~i! The interface is treated in the framework of the simp
capillary wave Hamiltonian.

~ii ! Assuming small values ofa in Fig. 1, only the inter-
action between the interface and that plane of the we

FIG. 1. Schematic view of the wedge geometry in which a l
uid condenses from a gas held at the coexistence pressurepcoex(T)
of the liquid-gas transition. The wedge is symmetric around thz
axis (p22a is the opening angle of the wedge! and the center of
the wedge runs along they axis. The liquid-gas interface~treated as
a sharp kink! has the local position,(x,y) above the wedge, while
,0 denotes its midpoint position~for x50). The situation where the
contact angleQ @of a macroscopic amount of fluid in the wedg
where,0 is much larger than all atomistic distances and line tens
effects onQ(T) can be neglected# exceedsa corresponds toT
,Tf , while the filling transition temperatureTf , where then,0

→`, is reached forQ(T5Tf)5a. Note that the state shown in th
upper part of the picture, whereQ.a but ,0 has a macroscopic
value, can only be realized in an ensemble constrained such
there is a macroscopic amount of fluid in the wedge@5#. In an
ensemble where the pressurep is fixed atpcoex(T), in the nonfilling
situation,0 is still a microscopic length, and hence larger than
thickness of the film coating all the walls of the wedge by a fin
factor only.
03160
e

surface which is geometrically closer to the interface than
other plane is taken into account.

~iii ! It is assumed that the fluctuations of the heig
,0(y)5,(x50,y) at the midpoint of the wedge dominate th
critical behavior.

In view of these uncertainties about the validity of the
assumptions, it is desirable to test them by a Monte Ca
study of the filling transition, and this is the goal of th
present paper. Recall that Monte Carlo tests of critical w
ting with short-range forces@21–23# have called the corre
sponding theory@24# into question@25#.

In Sec. II we define the model that is studied here. F
technical reasons we study a double wedge of cross sec
L3L and hencea5p/4, i.e., a is not small, since this al-
lows us to study also the present model within the fram
work of a nearest neighbor Ising model on the simple cu
lattice; a double wedge is used, since in computer simu
tions necessarily all linear dimensions are finite, and henc
wedge that is open and infinitely extended, as sketche
Fig. 1, cannot be simulated. Also in Sec. II we recall what
known about the wedge filling transition in more detail a
discuss our finite size scaling concepts used to analyze
results in Sec. III Finally, Sec. IV gives a summary and o
look on future work.

In the present paper we complement the information p
vided in abbreviated form@26#. Specifically, we extend the
previous study in the following points.

~i! We locate the filling transition by calculating the co
tact angle on a planar substrate via Young’s equation.
compare this result to the finite size scaling analysis@26#, the
dependence of the height,0 in the middle of the wedge, and
a naive analysis of profiles of the wedge’s cross section.

~ii ! We study complete filling.
~iii ! We elucidate the role of the length of the wedgeLy

and provide evidence for the absence of a transition in
limit Ly→` at fixed cross section.

~iv! We change the model as to consider surfaces wh
exhibit second-order and first-order wetting transitions
planar geometry.

II. THE MODEL AND SOME THEORETICAL
BACKGROUND

A. The problem

Throughout this paper we consider a nearest neigh
Ising ferromagnet on a simple cubic lattice with linear d
mensionsL3L3Ly , with periodic boundary conditions ap
plied only in the third direction~the y direction, where the
linear size isLy). In the first two directions~the x and z
directions of the lattice!, we have free boundary condition
~i.e., missing spins across the boundary!, but we also apply
surface fields1Hs at the two upperL3Ly surfaces~for
clarity, Fig. 2 shows a schematic cross section through
system to define the notation! and surface fields2Hs at the
two lower surfaces.

The Ising model in this antisymmetric double-wedge g
ometry is described by the following Hamiltonian:

-

n

at
1-2



ing

ay,

ce

ice
m-
will
ry
of

be
ion

e in
e
sur-
hall

in
d-

ace

o-

xi-

i-
n

nd
he

o
e

tu

ei
t
si-
ot-

.
tw

r
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FIG. 2. ~a! Cross section through the double-wedge geometry
the simulatedL3L3Ly Ising lattice. The interface between th
domains with positive and negative magnetization~indicated sym-
bolically by the thick arrows! starts out at the left wedge (x5

2L/A2, z51L/A2) and ends at the right wedge (x5z5L/A2).
Above the temperature of the filling transition, the interface fluc
ates weakly around its mean positionz5L/A2, i.e., ,(x)[z2uxu
5L/A22uxu. Below this transition temperature, the interface is
ther bound to the surfaces where negative surface fields ac~as
assumed in the sketch! or, equivalently, to the surfaces where po
tive surface fields act. Only in the immediate proximity of the b
tom of the wedge (x50,z50) @or at the top (x50, z5LA2), re-
spectively# does a minority domain~with roughly triangular cross
section! exist, characterized by the maximum distance,05,(x
50) ~or LA22,0, respectively! of the interface from the surfaces
The distance of a point at the interface near the wedge from the
boundaries forming the wedge is indicated, namely,,/A2 and c
5A2(uxu1,/2), respectively.~b! Fluctuations of ,0 along the
wedge are characterized by two correlation lengths.jy describes the
fluctuations of the interface bound to a wedge, whilejy

1D refers to
the length of domains, where the interface is bound to the uppe
lower wedge.
03160
H52J (
^ i , j &bulk

SiSj2Js (
^ i , j &PW1øW2

SiSj2Hs (
i PW1

Si

1Hs (
i PW2

Si , ~5!

where J[1 denotes the exchange constant of the Is
model in the bulk and the spin variablesSi can take values
61. In addition, the exchange constantJs in the surface
planes may differ from the exchange in the bulk. In this w
a ‘‘double wedge’’ is created, where two planes (W2) with
negative surface fields meet at the linex50, z50 ~they axis
of our coordinate system!, while the two other planes (W1)
with positive surface fields meet in the opposite linex50,
z5LA2. Of course, the actual orientation of the latti
planes of the Ising lattice is rotated relative to they-axis by
the anglep/4, such that the surfaces become simple latt
planes of the simple cubic lattice again, but this is not i
portant for the phenomenological considerations that we
present below. Apart from the different choice of bounda
conditions, the model is identical to that used for a study
critical wetting @21–23# and interface localization@27–30#.
At this point, we recall again that the Ising model can
reinterpreted as a lattice model for the liquid-gas transit
via the lattice gas interpretation. A zero bulk fieldH50 then
corresponds to the pressure of the liquid-gas coexistenc
the bulk. However, for this application to fluids it would b
more realistic to assume long-range van der Waals–type
face forces rather than strictly local surface forces. We s
comment on this problem below. We are mostly interested
the location,(x) of the interface above the wall, disregar
ing the dependence on they coordinate~the y axis runs per-
pendicular to thexz plane shown in Figs. 1 and 2, of course!,
which needs to be considered in the discussion of interf
fluctuations. We define,(x) simply as

,~x!5z2uxu, ~6!

z being the position of the contour separating the two d
mains of positive and negative magnetization~in this
description, we treat the interface in the sharp kink appro
mation, neglecting a possible ‘‘intrinsic profile ’’ of the
interface@11–13#!.

B. Phenomenological mean-field theory

Following the treatment of Rejmer, Dietrich, and Nap
orkowski @5#, we first formulate the problem in terms of a
effective interface HamiltonianH@,#, which we write as

H@,~x!#5LyE
2L/A2

1L/A2
dxH sSA11Fd,~x!

dx
1sgn~x!G2

2A2D 1A2Vtot~,,x!J . ~7!

Here s is the interface free energy per unit area a
Vtot(,,x) is the total interface potential experienced at t
interface position@x,y,z5uxu1,(x,y)# due to the interac-
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tion with all four boundaries on which the surface fields a
The standard approximation A11(d,/dx)2'1
1(1/2)(d,/dx)2, which also is used in the theoretical trea
ments of the wedge filling transition@6,7#, assumes that the
anglea in Fig. 1 is very small. This leads to the capilla
wave Hamiltonian@12–14# in its usual form, but this canno
be used here sincea5arctan 15p/4 is of order unity and the
expansion of the square root is unwarranted. We also h
chosen the convention to measure the interface energy
tive to that in the state above the filling transition tempe
ture, where,(x)5L/A22uxu. The extra factorA2 in the last
contribution accounts for the ratio betweenLydx and the
surface area.

For an interface that interacts with a flat wall with sho
range forces and is located at~constant! heighth above this
straight wall, the standard assumption for the potentia
@11–14,29,31#

V~h!5aexp~2kh!1b exp~22kh!, ~8!

wherea, b, andk are phenomenological constants. The c
efficient a changes sign at the second-order wetting tran
tion temperatureTw such thata,0 for T,Tw ; k is of the
same order as the bulk inverse correlation lengthjb

21 , but
probably not identical@28,29#. For a,0 the film thickness
h! is finite. Using (dV/dh) uh!50 one obtains exp(2kh!)5
2a/(2b) and V(h!)52a2/(4b). Using the Young equation
@12,13#, we can relate the minimum of the interface potent
to the contact angleQ via V(h!)5s(cosQ21).

In the present geometry~Fig. 2!, however, the treatmen
needs to be extended to include interactions with all f
walls. Simple geometric considerations show~Fig. 2! that the
normal distances of a point@x,y,z5uxu1,(x)# at the inter-
face from the four walls are,/A2, c5A2uxu1,/A2, L
2,/A2, L2c5L2,/A22A2uxu, and hence in our case Eq
~8! needs to be replaced by

Vtot~,,x!54a exp~2kL/2!coshS kx

A2
D coshS k

A2
F L

A2
2,~x!

2uxuG D 14b exp~2kL !cosh~A2kx!

3coshS A2kF L

A2
2,~x!2uxuG D . ~9!

Note that our result forVtot(,,x) does not reduce to the resu
of Rejmer, Dietrich, and Napio´rkowski @5# even in the limit
L→`, because Rejmer, Dietrich, and Napio´rkowski @5# take
into account the interaction with the nearest boundary o
and neglect the interaction with the more distant bound
Their approximation should become accurate for wid
open edges~i.e., a!1), which is not the case here, whe
a5p/4. As a consequence, the potentialVtot(,,x) depends
on x not only implicitly @via thex dependence of,(x)], but
also explicitly. This fact complicates the treatment even
the level of the mean-field theory considerably.
03160
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Now mean-field theory for this problem is equivalent
the minimization of the HamiltonianH@,# with the appro-
priate boundary conditions,,(x52L/A2)5,(x5L/A2)
50. The resulting Euler-Lagrange equation following fro
Eq. ~7!,

s
d2,~x!/dx2

S 11Fd,~x!

dx
1sgn~x!G2D 3/25A2

]

],
Vtot~,,x!, ~10!

generalizes the result of Rejmer, Dietrich, and Napio´rkowski
@5#. Since it was possible to solve the Euler-Lagrange eq
tion of Ref.@5# only in special limits, there is little hope tha
the explicit analytic solution of Eq.~10! could be found, and
in fact we have been unable to do so. If we approxim
Vtot(,,x) by Veff@,#'aexp(2k,/A2)1b exp„2A2k,(x)…
we can write]Vtot(,,x)/],'dVeff /d,, and thus recover Eq
~3.3! of Ref. @5#. Using this approximation and multiplying
both sides of Eq.~10! with d,/dx, we can integrate:

2
21~d,/dx!

A11@~d,/dx!11#2U
,(01)

,(x)

5A2@Veff„,~x!…2Veff„,~0!…#.

~11!

Far away from the corner the distance between the inter
and the surface will be equal to the value of a planar surfa
i.e., ud,/dxu50 and Veff„,(x)…5V(h!)5s(cosQ21).
Here, we disregard the immediate neighborhood ofx5
6L/A2 and assume that the effects on the profile,(x) near
x50 from this region are negligible.

We follow Rejmer, Dietrich, and Napio´rkowski @5# and
require that the solution is symmetric,uxu1,(x)5u2xu
1,(2x), and henced,/dx521 for x501. At the filling
transition,(0);L/A2 and, hence,Veff„,(0)… is of the order
exp(2kL/A2). We expect the effective potentialVeff only to
estimate the order of magnitude; clearly, in the situat
where the interface runs along the diagonal of the wed
interactions with all surfaces need to be considered. Th
the right-hand side of Eq.~11! takes the following form:

A2F2
a2

4b
1O„exp~2kL/A2!…G

5A2@s~cosQ21!1O„exp~2kL/A2!…#

~12!

at the filling transition. The left-hand side of Eq.~11! equals
2A21152A2(12cosa), where we have used cosa
51/A2 for our double-wedge geometry. Therefore cosQ
5cosa1O„exp(2kL/A2)… at the filling transition.

Note that this condition differs substantially from th
analogous result for the interface localization-delocalizat
transition between competing flat walls a distanceL apart,
which rather reads@29,31#

a14b exp~2kL/2!50. ~13!
1-4
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While Eq. ~13! shows that the transition temperature of t
interface localization transition forL→` converges towards
the wetting transition temperature, the filling transition te
perature forL→` differs substantially from the wetting
transition temperature, in fact, it occurs when the cont
angle Q on the planar substrate approaches the open
anglea. Similar to the interface localization-delocalizatio
transition in a film, however, mean-field theory suggests t
the transition temperature in the double-wedge geometry
fers from the transition temperature forL→` by terms of
order exp(2kL/A2).

C. Fluctuations of the interface in the ‘‘disordered phase’’
within mean-field theory

In this section we consider the region of temperatu
above the filling transition temperature, where the interfa
in our double-wedge geometry is not bound to either
lower wedge or the upper wedge, but runs more or l
straight from the left corner of the square cross section to
right corner~at z5L/A2) in Fig. 2. Since we know that thi
trivially is the solution for the average position of the inte
face, it is a straightforward matter to expand the effect
free energy quadratically around this solution. In the ana
gous case of the interface localization-delocalization tra
tion between parallel walls, this approach has yielded me
field prediction for the ‘‘susceptibility’’ of the interface
localization transition@29#, and it clearly is of interest to try
such an approach in the present problem too.

Defining f 5uxu1,(x,y) we rewrite Eq.~7! as

H@ f #5E
2L/A2

1L/A2
dxE

0

Ly
dyH sSA11S ] f

]xD 2

1S ] f

]yD 2

2A2D
1A2Vtot„,~x,y!,x…J . ~14!

Since for the considered conditionsu] f /]xu!1, u] f /]yu
!1, alsod f 5 f 2L/A2 is small, one can expand Eq.~14! as
follows ~constant terms being omitted!:

H@ f #'E
2L/A2

1L/A2
dxE

0

Ly
dyH s

2 F S ]d f

]x D 2

1S ]d f

]y D 2G
12aA2 exp~2kL/2!cosh~kx/A2!@11k2~d f !2/4#

12bA2 exp~2kL !cosh~kxA2!@11k2~d f !2#J .

~15!

One readily sees from Eq.~15!, however, that the coefficien
of (d f )2 is not uniformly positive in the interval2L/A2
<x<1L/A2, as would be required for this expansion to
applicable. Rather, one finds that the coefficient of (d f )2 is
only positive close to the left and right corners while furth
inside the double wedge there occurs a critical va
6xc(a), where this coefficient changes sign. This valuexc is
found from the solution of the equation
03160
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a524b exp~2kL/2!cosh~kxcA2!/cosh~kxc /A2!.
~16!

Thus we expect that fluctuations of the interface are sta
~whena,0, i.e., below the wetting transition temperature
the flat surface! only in the regions6(L/A2<x<xc), while
interfacial fluctuations are unstable in the regime2xc<x<
1xc . When the interface localization-delocalization tran
tion is approached,xc→L/A2, the interface gets unstable i
its ‘‘unbound’’ position everywhere. Therefore the transitio
to the states where the interface is bound to one of
wedges must occur.

D. Beyond mean-field theory

Using Eq. ~14! we obtain the free energy fromF5
2kBT ln Z, whereZ5*Df exp(2H) with a factor 1/kBT ab-
sorbed in the definition ofH@ f #. This would be a rather
formidable problem. In fact, fluctuations have only been co
sidered@6,7# for the simpler case of a single infinite wedg
~Fig. 1! with a!1. Analyzing this simplified model in the
mean-field approximation for a critical filling transition wit
short-range forces, one finds that the exponents@see Eq.~1!#,
for the short ranged boundary potential Eq.~8! are @7#

bs50, n'51/4, ny51/2. ~17!

Herebs50 means that the midpoint interface position,0 in
Fig. 1 grows only logarithmically int512T/Tf as the fill-
ing transition temperatureTf is approached from below, i.e
^,0&}u ln tu. On the other hand, the result thatj'}t21/4 as t
→0 shows that mean-field theory for this problem is ina
equate, since the ‘‘contact condition’’@32# j' /^,0&!1 is
violated. Thus, fluctuationsbeyond mean fieldneed to be
considered. Rather than treating the full Hamiltonian—wh
should be able to describe both wetting~wherea50) and
filling ~whena.0)—Parryet al. @6,7# argue that it suffices
to consider a simpler Hamiltonian where only fluctuations
y direction are included. Then,,(x,y)[ l 0(y)2auxu for
a!1,

Hfill ~,0!5E dyH s,0

a S d,0

dy D 2

1Vfill ~ l 0!J , ~18!

with @for large l 0 the subleading term proportional to ex
(22kl0) can be omitted#

Vfill ~ l 0!5
s~Q22a2!l 0

a
1aF exp~2k l 0!. ~19!

Q is the contact angle at the filling transition andaF is re-
lated to the parametera of Eq. ~8!. Note that botha andaF
are negative in the regime of interest. Of course, the con
tion ]Vfill /],050 would yield

k^ l 0&52 ln@s~Q22a2!/~ uaFuka!#, ~20!

and sinceQ2a}t @remember,Q(T5Tf)5a], the above
result^ l 0&}u ln tu follows. For the Hamiltonian Eq.~18!, how-
ever, a treatment of fluctuations yields the exponents quo
1-5
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in Eq. ~2! @6,7# rather than the mean-field results, Eq.~17!.
This treatment also yields a scaling prediction for the
sponse of^,0& to a bulk magnetic field, involving a ga
exponentD55/4 @6,7#:

^ l 0&5t21/4,̃~Ht2D!, ~21!

where ,̃ is a scaling function which behaves as,̃(z→`)
}z21/4D, which yields Eq.~3!.

For the sake of completeness, we mention that Eq.~2! is
valid not only for systems with strictly short-range surfa
forces but also for surface forces that decay with a power
V(h)}h2p, providedp>4. In contrast, forp,4 Eq.~17! is
replaced by

bs51/p, n'51/4, ny51/211/p, ~22!

and one can show that mean-field theory is self-consis
when t→0 @7#.

E. Phenomenological finite size scaling considerations

Finally we note another important distinction between
interface localization transition and the wedge filling tran
tion: while the interface localization transition can occur f
any finite distanceL between the two planar boundaries, al
when fluctuations are taken into account, the wedge fill
transition exists only in the limitL→`. It is rounded off for
any finite L because then the system is quasi-o
dimensional and cannot maintain true long-range order in
y direction. Thus, there is a characteristic domain sizejy

1D

@cf. Fig. 2~b!# over which the magnetization of the doub
wedge forT,Tf is positive~as assumed in the cross secti
Fig. 2, since the area of the positive domain is larger!, while
then an interface occurs where the interfaces move up f
the line z5^ l 0& ~betweenx52^,0& and x51^ l 0&) to the
line z5LA22^,0& ~also betweenx52^,0& and x5
1^ l 0&). Here we have assumed that the cross section of
interface between positive and negative domains in
double wedge is essentially a horizontal straight line
height z5 l 0 in Fig. 2. Thus the area of such an interfa
across the wedge~needed to change the sign of the magn
tization! is L222^,0&

2, and hence the free energy cost~in
units of temperature, having absorbed a factor 1/kBT in our
Hamiltonian! is (L222^,0&

2)s. As a consequence, we es
mate that the typical domain size iny direction should be

jy
1D}exp$s~L222^,0&

2!%

[exp$~4pv!21@~L/jb!222~^,0&/jb!2#%,

~23!

where in the last step we have used the capillary param
@12–14# v5(4pjb

2s)21, v'0.86 @33# for the Ising model.
Thus forLy@jy

1D one should observe that the magnetizat
of the double wedge is always zero, due to the formation
many domains of typical sizejy

1D . However, if L is suffi-
ciently large andLy not too large, one should observe typ
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cally single domain states of the type as sketched in Fig
~or their mirror image along the mirror planez5L/A2) only.

We now discuss the fluctuations of the total magnetizat
m5(L2Ly)

21( iSi in the limit whereL is sufficiently large
that we can approach the filling transition rather closely a
still have Ly!jy

1D for a large value ofLy such thatLy

@jy . We then expect that the magnetization fluctuatio
scale as

L2Ly~^m
2&2^m&2!}mb

2j'jxjy}t2(n'1nx1ny)5t25/4.
~24!

Equation ~24! is based on the speculative suggestion t
magnetization fluctuations here are predominantly cause
random fluctuations of the interface; if the interface passe
volume element, the magnetization in the volume elem
changes from1mb , the value of the spontaneous magne
zation in the bulk, to2mb , and vice versa. This magnetiza
tion fluctuation is correlated in a correlation volume, whi
is j'jxjy for the filling transition. This reasoning assum
that the amplitude of the interface fluctuations is compara
to the lateral dimensionL itself. We shall confirm this as-
sumption by Monte Carlo simulations~cf. Fig. 12! and also
justify it by relating the interface localization-delocalizatio
transition in a double wedge to the predictions of Parryet al.
@6,7# via some plausible phenomenological arguments@26#.

Of course, we always can write a fluctuation relation f
the susceptibility:

kBTx5kBT
]m

]H
5L2Ly~^m

2&2^m&2!, ~25!

where in a finite system actually it is appropriate to repla
^m&2 by ^umu&2 in the phase where one expects symme
breaking @34,35#. Hence Eqs.~24! and ~25! imply that x
}t25/4, i.e., we speculatively predict thatg55/4 for the fill-
ing transition.

Now we discuss finite size scaling for this problem mo
generally, but assumingjx}j' , so that two nontrivial corre-
lation lengthsj'}t2n', jy}t2ny remain@cf. Eq. ~2!#. Then
the most general scaling assumption for the susceptib
would be@36#

x5t2gx̃~Ly /jy ,L/j'!5t2gx̃~Lyt
ny,Ltn'!, ~26!

x̃ being a suitable scaling function@in the last step of Eq.
~26! we actually have suppressed amplitude prefactors in
arguments of this scaling function#. Alternatively, we may
write

x5t2gx̃̃~Ly /Lny /n',L1/n't !, ~27!

wherex̃̃ is another scaling function, and now only one arg
ment depends on temperature, the other argumentLy /Lny /n'

@5Ly /L3, if Eq. ~2! holds# is a generalized aspect ratio@36#.
Similar relations can be written for the fourth-order cumula
of the magnetization@36,37#:
1-6
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UL,Ly
[12^m4&/~3^m2&2!5Ũ~Ly /jy ,L/j'!

5 Ũ̃~Ly /Lny /n',Ly
1/nyt !, ~28!

whereŨ, Ũ̃ are suitable scaling functions.
It turns out that a similar scaling as for the cumulant a

plies for the magnetization of the Ising model in the doub
wedge geometry:

^m&5mbm̃~Ly /jy ,L/j'!5mbm̃̃~Ly /Lny /n',Ltn'!,
~29!

wherem̃ and m̃̃ are suitable scaling functions andmb is the
spontaneous magnetization of the bulk three-dimensio
Ising model. Normally, at a second-order transition o
would have a power laŵm&}tb and a corresponding pref
actor in Eq.~29!, but here this exponentb50. This also
implies that the ‘‘gap exponent’’D5g1b5g, and Eq.~24!
is consistent with Eq.~21!. We may motivate the result Eq
~29! by noting that for finite ‘‘aspect ratio’’Ly /Lny /n', we
expect from geometry~Figs. 1 and 2! the following relation
for the magnetization:

^m&5mbS 122
^,0&

2

L2 D 5mb@12const~ t1/4L !22#, ~30!

which is compatible with Eq.~29!, sincen'51/4 @Eq. ~2!#.
For t!0 we expect then a double Gaussian form forPL(m)
if Ly /Lny /n' is kept finite andm is near6^m&:

PL~m!}expF ~m2^m&!2L2Ly

2kBTx G1expF2
~m1^m&!2L2Ly

2kBTx G .
~31!

We note that the argument of the exponentials can be rew
ten as

S m

^m&
61D 2^m&2L2Ly

2kBTx
5L2LyL

2g/n' f̃ ~Ly /Lny /n',L1/n't !

5L21ny /n'2g/n' f̃̃ ~Ly /Lny /n',L1/n't !,

~32!

where f̃ , f̃̃ are suitable scaling functions that result fro
inserting the scaling expressions for^m& @cf. Eq. ~29!# andx
@cf. Eq. ~27!#. Now, Eqs.~31! and~32! are compatible with a
scaling description ofPL(m) at the filling transition itself
~wheret50) only if the power law prefactor ofL in Eq. ~32!
vanishes.~If a positive power ofL remained, a two-delta
function distribution would also appear atT5Tf . Such a
description in terms of a two-delta function distribution atTf
would be expected if the interface localization-delocalizat
transition in the double-wedge geometry was a standard fi
order transition.! This requires that a~generalized! hyperscal-
ing relation holds:

2n'1ny5g, ~33!
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which is nothing but a special case of the generalization
hyperscaling to uniaxially anisotropic criticality@36#,

~d21!n'1ny5g12b ~34!

noting that we deal withd53, b50 here. The exponent
suggested above@n'5 1

4 , ny5 3
4 , cf. Eq. ~2!# andg5 5

4 @see
Eq. ~24!# are indeed fully consistent with Eq.~33!.

Now a convenient way to estimate exponents such
1/n' , 1/ny is to take temperature derivatives at these co
mon intersection points of the cumulants or magnetizatio
from which we predict slopes that scale asLy

4/3 ~keeping the
generalized aspect ratioLy /L3 fixed!.

We emphasize that unlike Eqs.~2! and ~21! which are
based on a calculation@6,7# using the approximate effectiv
Hamiltonian Eq.~18!, Eqs.~23!–~34! are highly speculative.
Thus, a Monte Carlo test of these conjectures, as well a
Eq. ~2!, is clearly warranted. While the filling transition for
single infinite wedge~Fig. 1! corresponds to a singularity o
the surface excess free energy only, Eqs.~26!–~34! imply a
special type of ‘‘bulk’’ transition in the limitL→`, Ly
→`, Ly /Lny /n'5const.

III. MONTE CARLO RESULTS

A. Direct analysis of the wedge filling

First of all we emphasize that for our simulations it
more convenient to varyHs at fixedT ~rather than varyingT
at fixedHs), as in our studies of wetting transitions@21–23#.
Thus, we reinterpret the distancet from the filling transition
as t5(Hsc2Hs)/Hsc , where Hs5Hsc(T) is the inverse
function of T5Tf(Hs). Of course, it should not matter in
which way the line of filling transitions is approached in th
(T,Hs) plane as long as it is not tangential to the line. Th
choice is preferable because the bulk properties of the Is
model~spontaneous magnetizationmb and susceptibility and
correlation lengthjb in the bulk, as well as the interface fre
energys) then stay strictly constant and none of these pr
erties can depend uponHs .

As a first estimate of the wedge-filling transition we u
the macroscopic criterion that the filling occurs when t
contact angleQ on a planar substrate equals the wedge an
a5p/4. The contact angleQ is given by the Young equa
tion:

cosQ5
ss1~Hs!2ss2~Hs!

s
5

Ds~Hs!

s
, ~35!

wheres denotes the interface tension between the coexis
phases in the bulk,ss1 andss2 are the surface free energie
of the bulk phase with positive and negative magnetizati
respectively. By virtue of the symmetry of the Ising mod
the difference of the surface free energiesDs at surface field
Hs can be written asDs(Hs)5ss1(1Hs)2ss1(2Hs).
The latter quantity can be obtained readily via thermod
namic integration@38#:

Ds~Hs!

J
5E

2Hs

1Hs
dHs8^Ms1&, ~36!
1-7
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MILCHEV et al. PHYSICAL REVIEW E 68, 031601 ~2003!
whereMs15(( i PsurfaceSi)/L
2 denotes the surface magne

zation of a planar surface when the bulk has a positive sp
taneous magnetization. The Monte Carlo results for the
pendence ofMs on the surface magnetic fieldHs at J/kBT
50.25 are presented in the inset of Fig. 3. For these sim
tions we have used a thin film with two symmetric walls a
periodic boundary conditions in the lateral directions. T
main panel compares the difference in surface free ene
Ds(Hs)/J with the value s/(JA2)50.277 51, where we
have used the accurate values of the interface tension o
Ising model@39#. The intersection point yields the estima
Hsc'0.71 for the wedge filling transition. This estimate
compatible with the valueHsc50.72 obtained from a more
detailed finite size scaling analysis~cf. below!. The devia-
tions are presumably due to inaccuracies of the surface m
netizationMs1 at large negative values of the surface fie
Hs . Under these conditions the system is metastable w
respect to capillary condensation to a state with a nega
magnetization in the middle of the film.~Note that the wet-
ting transition is of second order for the planar substrate
unlike the situation at a first-order wetting transition me
stable states cannot be observed close to the wetting tr
tion.! Therefore, we can monitor the surface magnetizat
only for a finite time and systematically overestimate t
surface magnetization. This, in turn, leads to an overesti
tion of Ds and a concomitant underestimation ofHsc .

Figure 4 shows typical results for the magnetization d
tribution in the wedge, in the form of contour diagrams f
four choices ofHs near the filling transitionHsc ~which is
not knowna priori, however!. These contour diagrams sho
that the magnetization decays very smoothly from1msp
('0.75 at the considered temperature! in the bulk to nega-
tive values in the lower left corner of the cross sections. T
variation is very gradual, and also at those cases (Hs50.68
and 0.695) where one can see that in large parts of the
tem the interfaces are bound to the left and lower bounda

FIG. 3. Surface free energy differenceDs as a function of the
surface magnetic fieldHs at J/kBT50.25. Data are obtained from
film with symmetric surfaces andL5Lz580. Arrows on the top
markHsc50.71 and 0.72, respectively. The inset shows the surf
magnetization as a function of the surface field.
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and run parallel to them, the thickness of the interfacial p
files is much broader than expected from the ‘‘intrinsic’’ in
terfacial width~which should be 2jb , with a bulk correlation
length of the order of only about a lattice spacing at t
considered temperature!. These observations already indica
that strong interface fluctuations are indeed present, and
come much more pronounced in the diagonal direction, w
the interface has become unbound from the left lower wed
e.g., atHs50.720 ~note the large spacing between adjace
contours nearm50).

In order to obtain an estimate where the filling transiti
occurs we plot ,0

24 versus Hs in Fig. 5: if ,0}(Hsc

2Hs)
21/4 holds, a plot of,0

24 versusHs should yield a
straight line whose extrapolation intersects the abscissa a
transition field,Hsc'0.706. The data are more or less com
patible with such an analysis, but there is a systematic de
tion for Hs<0.6, presumably because the data are too
away from the filling transition and forHs>0.7 due to finite
size effects. The inset of Fig. 5 shows that,0 increases with
increasingHs only very gradually and,05L/A2 ~corre-
sponding to a flat interface connecting the wedges where
competing boundaries meet! is not at all reached over th
entire range of surface fields, up toHs51.6. Also the point
where the curve,0 versusHs has its steepest slope (Hs
'0.7360.01) exceeds the value found from the extrapo
tion somewhat. Thus, this ‘‘naive’’ way to study the fillin
transition by Monte Carlo simulation is hardly suitable to te
the theory.

The situation is much clearer when we investigate
variation with the conjugate field@cf. Fig. 6~a!#. We see that
for fieldsH/J>0.01 the interface distance from the wedge
too small (,0<4 lattice spacings!, so this region of fields
clearly is unsuitable to test the theoretical predictions. F
the case where we are deep in the phase where the inte
is unbound from the wedges, we can confirm the behav
,0(H)}H21 predicted for complete filling@cf. Eq. ~4!# at
least for 1023<H/J<1022. For smaller fields finite size ef
fects are visible. Fig. 6~b! shows also evidence for Eq.~3!;
testing this relation is more subtle, sinceHsc is not known
exactly.

B. Finite size scaling analysis of the localization-delocalization
transition in the double wedge

Since it is obvious that the parameterLy plays a crucial
role in the analysis of the simulation data, we proceed nex
the variation of properties withLy at fixed L. As we have
asserted in the preceding section, we expect that there ca
be a transition when we letLy→` at fixed L, because the
problem becomes quasi-one-dimensional. Nevertheless,
ting the fourth-order cumulant versusHs for L540 and vari-
ous choices forLy , we find~Fig. 7! rather well characterized
intersection points~and this is confirmed by an intersectio
point of the absolute value of the magnetization! at Hsc
'0.72. Does this render our conclusion about the absenc
a transition forLy→` obsolete? This is clearly not the cas
rather, the correct interpretation presumably is thatjy

1D @Eq.
~23!# for L540 is already very large, and orders of magn

e
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FIG. 4. Contour diagrams of the magnetization distribution in thexy plane~i.e., averaged over they direction! of L3L3Ly Ising lattices
with L560, Ly5120, Js50.5, J/kBT50.25, and four choices ofHs : Hs50.68~a!, 0.695~b!, 0.705~c!, and 0.720~d!. Contours are shown
from m520.6 to10.6 in steps of 0.2. Note that the surface field is negative at the left vertical boundary and at the lower boundar
cross sections.
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tude larger values ofLy would be needed to see the syste
form domains of opposite magnetization along they direc-
tion. This latter interpretation is corroborated by the findi
~Fig. 8! that no longer any intersections occur when we ma
the cross section much smaller (L25144 rather thanL2

51600). In order to verify Eq.~23! more thoroughly, we
have performed measurements of the correlation length
the magnetization in a plane,jy

1D along they direction~Fig.
9!. It is seen that in the regionHs.Hsc ~where the interface
runs in diagonal direction across the wedge, and the corr
tions along they axis are dominated by interface fluctu
03160
e

of

la-

tions! one finds that lnjy
1D}const.L, while for Hs,Hsc

~where the interface is bound in a wedge, and only afte
length jy

1D jumps over to the opposite wedge! one indeed
finds that lnjy

1D/L}L, i.e., lnjy
1D}L2, as predicted@Eq. ~23!#.

Of course, there is still need to understand these data in m
detail; one can already see that too small wedges~such as
L54, 6, and 8) are not very helpful to elucidate the beh
ior, presumably, one must haveL@2jb before any of the
phenomenological considerations of Sec. II start to ma
sense. This is plausible, since the constant (4pv)21 is of the
order of 1/10 in Eq.~23!.
1-9
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MILCHEV et al. PHYSICAL REVIEW E 68, 031601 ~2003!
Since the finite size effects associated withLy clearly are
important, we want to check the finite size scaling ideas
Sec. II, keeping the aspect ratioLy /L3 approximately con-
stant. This means doublingL requires increasingLy by a
factor of eight! Figure 10~a! shows that again the cumulan
~as well as the absolute value of the magnetization! have a
rather well pronounced common intersection point atHsc
'0.72, the value already found from Fig. 7~whereLy was
varied at fixedL).

Figure 10~b! presents our data for the magnetization flu
tuation and the susceptibilityx, respectively. The peak
height of kBTx in the finite system clearly scales asL2Ly ,
becausê m2&2^umu&2 at the transition is of order unity a
L→`. The scaling of the peak widthG}L24 is exactly what
one expects from Eq.~27!.

A particular gratifying result is seen in Fig. 11, whic
demonstrates that the cumulant at fixed aspect ratioLy /L3

has the expansion expected from Eq.~28!, namely,

UL,Ly
2 Ũ̃~0,Ly /L3!}tLy

4/31•••, ~37!

and the theoretical exponent 1/ny54/3 is in good agreemen
with our simulation data.

Figure 12 studies the probability distribution of the ma
netization at our estimated value for the filling transitio
Hsc50.72, varying againLy at fixed aspect ratioLy /L3. In
order to reduce the influence of the surface spins we reg
the distribution ofm2ms[(M2Ms)/(L21)2Ly , whereM
andMs denote the extensive magnetization of the total s
tem and the surface. The peaks of the distribution do
move inward with increasing size, as they would do if t
order parameter exponentb of the magnetization were pos
tive @26#, but rather move slightly outward. Forb.0 the
peak positions ofP(m) would scale asL2b/n @26#, and this
is clearly not the case. Of course,m is bounded between

FIG. 5. Plot of the inverse fourth power of the interface distan
from the wedge vs surface field strengthHs , showing a possible
straight line fit to estimateHsc'0.706 from an extrapolation
The system parameters are the same as in Fig. 3, including a
second linear dimensionL5240. The inset shows a linear plo
of ,0 vs. Hs .
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21 and11, and so these peak positions can ultimately o
settle down at constant values. Therefore, this behavio
only compatible withb50, sinceb,0 is physically impos-
sible. Now a first-order transition can formally also be d
scribed byb50, but P(m) would then converge forL→`
towards the sum of two delta functions, and this is clea
not the case here becauseP(m) retains a nontrivial shape in
the thermodynamic limit. We expect that the shape ofP(m)
will depend on the generalized aspect ratioLy /L3 but we
have not studied this problem. In any case, also the existe
of correlation lengths and the susceptibility, which all d
verge with power laws asHs→Hsc , suggests that this tran
sition should be interpreted as a limiting case of a seco
order transition rather than a first-order transition. Th
behavior corroborates our speculative remarks on the fi
size scaling behavior ofPL(m) in Sec. II.

A further test of scaling behavior is provided by Fig. 1

e

a

FIG. 6. ~a! Interface distance,0 from the wedge plotted vs bulk
field H, for Js50.5, J/kBT50.25, Hs521.0, Ly560, and three
choices ofL (L5120, 240, and 320, respectively!. The inset shows
the same data as a log-log plot.~b! Same as~a! but for the critical
field Hsc50.72, L560, Ly580. The broken straight line on th
log-log plot indicates the theoretically predicted slope of21/5.
1-10



p-
r

rd

o
o

e
ub

g

ile
et-
e

n-
ar
at
e
.
val
e

la-
ise
ce

-
e
Di-

the
ym-

rlo
de-
pts
ple

ex-
was
st-
nt

lu
su

on

WEDGE FILLING AND INTERFACE DELOCALIZATION . . . PHYSICAL REVIEW E68, 031601 ~2003!
where the magnetization fluctuation is plotted versusuHsc

2HsuLy
1/ny . From Eqs.~26! and~27! we predict that for fixed

aspect ratioLy /Lny /n' we have a behavior̂m2&2^umu&2

5t2g/(L2Ly) f (tL1/n') 5(tL1/n')2g(Lny /n'/Ly) f (tL1/n')
5 f̃ (tL1/n').This type of scaling behavior is strongly su
ported, moreover, for largez5tL1/n' the expected behavio
f̃ (z)}z2g5z25/4 is seen.

Up to this point we have employedJs50.5. In this case
the wetting transition on a planar substrate is of second o
and the wedge filling transition is also of second order~cf.
Fig. 5!. In practice there are few experimental realizations
second-order wetting transitions. One important prediction
Parry et al. @6,7# is that the wedge filling transition may b
second order even if the wetting transition on a planar s

FIG. 7. Fourth-order cumulantU plotted vs Hs for Js50.5,
J/kBT50.25H50, L540, and several choices ofLy , as indicated
in the figure. The inset shows corresponding data for the abso
value of the magnetization. The intersection of these curves
gests a transition atHsc50.72.

FIG. 8. Same as Fig. 7, but forL512.
03160
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strate is of first-order. In the Ising model first order wettin
transitions occur forJs.Jtri , where the tricritical wetting
transition has been estimated to occur forJtri'1.2 @21,22#.
We have studied two casesJs51.3 andJs51.1. The larger
value corresponds to a first-order wetting transition, wh
the smaller value is still in the regime of second-order w
ting for the planar semi-infinite Ising system. In Fig. 14 w
plot ,0 versus the surface fieldHs . ForJs51.1 the data give
evidence for a critical filling transition. For the stronger e
hancementJs51.3 of the surface interactions we find a cle
cut first-order filling transition. The present data indicate th
the tricritical filling transition occurs at a similar value of th
surface enhancementJs as the tricritical wetting transition
Our data do not rule out that there might still exist an inter
of Js where the wetting transition is of first order but th
wedge filling transition is of second order, but our simu
tions indicate that this interval is small. For a more conc
test of Parry’s conjecture the detailed form of the interfa
potential has to be measured.

First-order filling might give rise to a rich prefilling be
havior for a finite bulk magnetic field. Prefilling of a wedg
has been discussed within mean-field theory by Rejmer,
etrich, and Napio´rkowski @5#, and we expect this to modify
the phase behavior in a double wedge in a similar way as
prewetting behavior alters the phase diagram of an antis
metric thin film @40#.

IV. OUTLOOK

In this paper, the results of an extensive Monte Ca
study of Ising models in a double-wedge geometry were
scribed, with the aim of testing available theoretical conce
on wedge filling transitions. We have used the same sim
cubic lattice model with nearest neighbor ferromagnetic
change and strictly short-range surface forces, which,
used successfully in previous work to probe critical and fir
order wetting~which occurs for strong enough enhanceme

te
g-

FIG. 9. Logarithm of the correlation length of the magnetizati
in the z direction,jy

1D , divided byL, plotted vsL for a variety of
surface fields. For these data a choice of parametersJs50.5,
J/kBT50.25, andLy51000 was made.
1-11
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MILCHEV et al. PHYSICAL REVIEW E 68, 031601 ~2003!
of the surface couplingJs relative to the bulk couplingJ)
and for the study of interface localization transitions in th
films. Since Monte Carlo work necessarily uses lattic
which have all linear dimensions finite, one must pay p
ticular attention to finite size effects on phase transitions.
thus carefully analyzed the finite size scaling behavior of
present problem. For systems with aL3L3Ly geometry, a
very nontrivial and interesting behavior occurs in the lim
L→`, Ly /Lny /n' finite, whereny is the critical exponent of
the correlation length of interface fluctuations in they direc-
tion along the wedge, whilen' is the critical exponent of the
correlation length of interface fluctuations, in the directi
perpendicular to the interface. The resulting behavior is a
lyzed in terms of a phenomenological scaling theory, a
arguments are presented that the filling transition of a sin

FIG. 10. ~a! Magnetization and fourth-order cumulant~inset!
plotted vsHs for Js50.5, J/kBT50.25, H50, and several choice
of L and Ly , keeping the aspect ratio approximately constant.~b!
Magnetization fluctuation̂m2&2^umu&2 plotted vsHs for the same
choice of parameters as panel~a!. The inset shows a test of th
power law for the half-widthG}L21/n i5Ly

24 .
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~infinite! wedge is equivalent to the interface localizatio
transition in an~infinitely large! double wedge. For the latte
case both second-order and first-order transitions have b
studied~as in the case of wetting at planar surfaces, the or
of the filling transition depends onJs : for sufficient en-
hancement ofJs both first-order wetting and first-order fill
ing transitions occur!. If the transition is second order, th
critical behavior of the double-wedge Ising model is ve
unusual. It is characterized by the critical exponentsb50,
g5ny12n' . We confirm the exponents predicted by Par
et al. @6,7# (ny53/4, n'51/4) and also obtaing55/4, thus
verifying this scaling law as well. While for critical wetting

FIG. 11. Log-log plot of the slope of the cumulants and mag
tizations at the intersection point vsLy . The slope of the straigh
lines is 1/ny51.3460.03.

FIG. 12. Probability distribution of the difference between t
magnetizationM and its surface valueMs normalized per bulk spin,
i.e., m2ms5(M2Ms)/(L21)2Ly for Js50.5, J/kBT50.25, H
50, Hs5Hsc50.72, and several choices ofL, Ly which approxi-
mately correspond to fixed aspect ratioLy /L3.
1-12
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at planar walls the corresponding simulations were har
able to detect any significant deviation from mean field
sults, for the present problem of wedge filling the cor
sponding non-mean-field theory of Parryet al. is straightfor-
wardly verified. We also present evidence that in the lim
Ly→` ~keepingL finite! no transition occurs, since then th
double wedge behaves analogously to a one-dimensi
~1D! Ising model, which has a finite correlation length at
nonzero temperatures. In the present problem, this corr
tion lengthjy

1D describes the distance over which the int
face between positively and negatively magnetized dom
is bound to the lower wedge or the upper wedge, resp
tively. The expected scaling lnjy

1D}L2 is also verified. This
reduction of dimensionality of interface localization
delocalization transitions to the 1D Ising case for the geo
etry L3L3Ly geometry withL finite andLy→` is the ana-
log of the 2D Ising behavior for theL3Ly3Ly geometry
with L finite andLy→`.

Nevertheless, these results should be viewed as on
first step: in order to address filling of fluids in real wedge
effects due to long-range forces between the adsorbed
ecules and the substrate must be included. Furthermore
use of an off-lattice model for the fluid would be desirab
While the theory of Parryet al. predicts that for a significan
range of parameters the same critical filling behavior resu
as was found for short-range surfaces, this latter predic
remains to be tested. We also could not verify yet the s
gestion that wedge filling may be a second-order transi
even if the corresponding wetting transition is a first-ord
transition: for the cases studied in the present paper, the o
of the corresponding filling and wetting transitions was t

FIG. 13. Scaling plot of the magnetization fluctuation vsuHsc

2HsuLy
1/ny . The broken straight line has a slope of21.243, close to

the predicted value2g525/4.
03160
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same. More work on these problems is clearly desirable
are corresponding experiments. Thus, it is encouraging
an experimental study of ‘‘complete filling’’ already exis
@41# and yields results compatible with the theoretical exp
tations. Further extensions could concern wedges with as
metry between the left and right surface~for a mean-field
treatment of a single asymmetric wedge see Ref.@42#! or the
low temperature behavior where wetting is replaced by l
ering in Ising models at temperatures below the interfa
roughening temperature@43#. Our phenomenological model
ing of the interface in the double wedge ignored the effec
the line tension of the two contact lines of the interface a
the wedge~Fig. 1!, and the effect of fluctuation in the pos
tion of the contact lines@44# along the wedge in they direc-
tion. It would we interesting to look into this problem i
future work. Another intriguing problem would be to addre
the kinetics of wedge filling induced by changes of the e
ternal control parameters. We hope to report on such stu
in the future.
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FIG. 14. Interface distancel 0 plotted vs surface field forJs

51.3, J/kBT50.25, Ly560, and three choices ofL580, 120, and
160, as indicated in the figure. The variation of, with Hs for
weaker couplingJs51.1 is also shown~stars and crosses!. The inset
replots,0

24 vs H for Js51.1, similar to Fig. 5. The data presen
evidence that the wedge filling transition is of first order forJs

51.3, while it is of second order forJs51.1.
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